
client authentication
with TLS and HTTP/2

history
HTTP/1.1 “allowed” servers to use TLS renegotiation to authenticate clients

… server holds the request, renegotiates, then authorizes based on the client certificate

This is not possible in h2

… concurrency makes that design infeasible

… TLS renegotiation is prohibited

ignoring a problem doesn’t make it go away
People actually rely on this behaviour in HTTP/1.1

This is holding back deployments of h2

solution overview
Signal using an h2 setting that a client allows TLS renegotiation

If a request requires TLS-layer authentication, then

… provide an identifier in a WAITING_FOR_AUTH frame

… add client authentication at the TLS layer, referencing the identifier

Multiple concurrent requests can await the same set of credentials

A single request can await multiple credentials

part 1.1 - WAITING_FOR_AUTH frame
WAITING_FOR_AUTH contains an opaque octet string: the identifier

It can be sent by a server when the client has an outstanding request

c s

HEADERS: GET ...

WAITING_FOR_AUTH

MAGIC HAPPENS HERE

HEADERS: 200 ...

contains an id

contains the same id

part 1.2 - tls 1.2 magic
In TLS 1.2, the magic is a server-initiated renegotiation

The identifier is carried in a ClientHello extension

enum {

 ..., application_context_id(EXTENSION-TBD), (65535)

} ExtensionType;

struct {

 opaque id<0..255>;

} ApplicationContextId;

part 1.3 - tls 1.3 magic
In TLS 1.3, there is no renegotiation

The server will send a TLS CertificateRequest, which will contain the identifier

Warning: This is not yet final in TLS 1.3, details are forthcoming

part 2 - setting negotiation
The setting SETTINGS_REACTIVE_AUTH defaults to 0

The client advertises SETTINGS_REACTIVE_AUTH = 1 to enable this

No setting, no play

don’t use this feature

adopt me

