client authentication

with TLS and HTTP/2



history

HTTP/1.1 “allowed” servers to use TLS renegotiation to authenticate clients

.. server holds the request, renegotiates, then authorizes based on the client certificate
This is not possible in h2

... concurrency makes that design infeasible

... TLS renegotiation is prohibited



ignoring a problem doesn’'t make it go away

People actually rely on this behaviour in HTTP/1.1

This is holding back deployments of h2



solution overview

Signal using an h2 setting that a client allows TLS renegotiation

If a request requires TLS-layer authentication, then

.. provide an identifier in a WAITING_FOR_AUTH frame

... add client authentication at the TLS layer, referencing the identifier
Multiple concurrent requests can await the same set of credentials

A single request can await multiple credentials



part 1.1- WAITING_FOR_AUTH frame

WAITING_FOR_AUTH contains an opaque octet string: the identifier

It can be sent by a server when the client has an outstanding request

HEADERS: GET ...

WAITING_FOR_AUTH

contains an id

-~ MAGICHAPPENS HERE——— contains the same id

HEADERS: 200 ...




part 1.2 - tls 1.2 magic

In TLS 1.2, the magic is a server-initiated renegotiation
The identifier is carried in a ClientHello extension

enum |
.., application_context_id(EXTENSION-TBD), (65535)
| ExtensionType;

struct {
opaque id<0..255>;
I ApplicationContextld;



part 1.3 - tls 1.3 magic

In TLS 1.3, there is no renegotiation

The server will send a TLS CertificateRequest, which will contain the identifier

Warning: This is not yet final in TLS 1.3, details are forthcoming



part 2 - setting negotiation

The setting SETTINGS_REACTIVE_AUTH defaults to 0
The client advertises SETTINGS_REACTIVE_AUTH =1 to enable this

No setting, no play



don't use this feature



adopt me



