
HTTP/2 Compression
(or at least one proposal)



Problems with currently deployed 
(gzip) compression

● Moderate CPU expense for the sender
● Double this cost for a proxy
● CRIME exploit



Delta-encoding plus canonical static 
huffman

That is what is being proposed here.

So.. how it works...



Detailed "How It Works"

The basic storage mechanism for this 
compressor is that of an LRU of Key-Value 
pairs. 

The compressor includes a set of operations 
which exist to manipulate this LRU by either 
inserting a new key-value, or by creating a new 
key-value by reusing an old key with a new 
value.



Detailed "How It Works" (cont'd)

Additionally, the compressor includes a set of 
pointers to these key-value lines in the LRU.

 These pointers are maintained and modified by 
another operation.

Each such set of pointers to key-value pairs 
represents a set of headers as would appear in 
a request or response.



Detailed "How It Works" (cont'd)

The compressor is pre-seeded with the 
common keys and some common values

It is very, very rare that a key is referenced by 
other than a numeric ID.



How well does this work?

At a moderate gzip window size (as deployed in 
Chrome for SPDY): both gzip and this achieve 
the same compression ratio over my dataset.

With a large gzip window size, gzip achieves a 
90% deflation, whereas the proposed 
compressor achieves 85% deflation with 1/3rd 
the CPU cost.



How well does this work? (cont'd)

As far as we can tell (so far), this compression 
scheme is not vulnerable to the CRIME exploit.



Disadvantages with this compressor

It doesn't achieve the maximum possible 
compression ratio*

*probably-- it is possible that, if clients and 
servers change how the send headers, the 
delta-compressor would always do better than 
gzip or equivalent but this is not proven.



Advantages of the compressor

It is fast. 3X cheaper than gzip and it could 
probably be faster if better optimized

It is proxy-friendly: Most of the decompressor 
state can be reused (with the help of an ID 
mapping) on the compression side. Thus, a 
proxy which wishes to maintain compression on 
both ingress and egress sides can do so 
cheaply



Advantages of the compressor 
(cont'd)

It is proxy-friendly (cont'd): Proxies also have 
available a don't-compress mechanism, 
whereby they can send interpretable data 
which doesn't affect, nor refers to compressor 
state.



Advantages of the compressor 
(cont'd)

Since we're encoding state changes, we don't 
have to 'reconsitute' the headers each time-- 
we can instead simply change the server state 
as appropriate

Since huffman-encoded strings are encoded 
using a static encoder, string matching can be 
done on the encoded form. No decoding is 
necessary before interpretation.



Advantages of the compressor 
(cont'd)

Most of the time, keys are referred to by ID and 
rarely take up space on the wire. This 
compares favorably (and is analogous) with the 
Friendly I-D, but doesn't require maintenance of 
a registry.



Avenues of further research:

Since the huffman-coding is a canonical 
huffman code, it is theoretically possible to 
receive a new huffman encoding efficiently 
Should it be done?

It is also theoretically possible to send a new 
'initial dictionary' to be used in future versions. 
Should it be done?



Avenues of further research:

Should the ID space encode distance in 
characters consumed instead of ID of key-value 
pair?


