
Template-Driven
HTTP CONNECT
Proxying for TCP

Ben Schwartz, HTTPBIS @ IETF 116

1

History

● “Modernizing HTTP Proxies” presented to HTTPBIS at IETF 115
○ Covered TCP proxies and HTTP proxies

● Feedback: Separate these topics and focus on TCP proxies first

2

HTTP Proxying Overview

Classic HTTP CONNECT (TCP):

https://proxy.example

CONNECT 192.0.2.1:443 HTTP/1.1

Host: 192.0.2.1:443

…

● No path -> One proxy per origin

● No “Host” -> One origin per IP:port
○ Cannot use the recommended

defenses against origin identity

misbinding.

MASQUE (UDP, IP):

https://proxy.example/path{?target_

host,target_port,target,ip_proto}

:method = CONNECT

:protocol = connect-udp

capsule-protocol = ?1

:scheme = https

:authority = proxy.example

:path = /masque?

 target_host=192.0.2.1&

 target_port=443

…

3

Proposal: Template-driven TCP Transport Proxy
(i.e. MASQUE for TCP)

Proxy is identified by a template:

https://proxy.example/tcp

{?target_host,tcp_port}

In HTTP/1.1:

GET /tcp?

 target_host=192.0.2.1&

 tcp_port=443 HTTP/1.1

Host: proxy.example:443

Connection: Upgrade

Upgrade: connect-tcp

In HTTP/2 & HTTP/3:

:method = CONNECT

:protocol = connect-tcp

:scheme = https

:authority = proxy.example:443

:path = /tcp?

 target_host=192.0.2.1&

 tcp_port=443

…

4

Closing remarks

● Useful
○ Fixes issues with Classic HTTP CONNECT on shared infrastructure.

○ More flexible support for TCP failover and Happy Eyeballs when not using implicit DNS.

○ Clarifies expectations for TCP RST and Expect: 100-continue.

● Convenient
○ Easy to implement and deploy alongside MASQUE.

○ No need to change client proxy configuration UIs or APIs that already take a string.

○ Can share a single template with “connect-udp” and “connect-ip”.

● Seeking adoption in HTTPBIS

5

