Proxy-Status

IETF104



curl -1 ip_address

HTTP/1.0 400 Bad Request

Server: squid/3.1.10

Mime-Version: 1.0

Date: Wed, 04 Feb 2015 18:58:06 GMT
Content-Type: text/html

Content-Length: 3157

X=Squid-Error: ERR_INVALID_URL @

Vary: Accept-Language

Content-Language: en

X-Cache: MISS from host.example.com
X-Cache-Lookup: NONE from host.example.com:80
Via: 1.0 host.example.com (squid/3.1.10)
Connection: close



Error 503 backend write error

This error is similar to the backend read error but occurs when Fastly sends information in the form of a POST request to
the backend. This error can be resolved the same way as the backend read error.

Error 503 client read error

This error generally occurs because of a network issue between the client and Fastly. It can also occur when a user
abandons the loading of a page (e.g., a page is loading too slowly and the user clicks stop in the browser). It is similar to
the backend read error but occurs when reading information from a client. If you get this error, contact Fastly support for
help identifying the network issue.

Error 503 backend fetch failed

This error occurs when the connection closes before Fastly cache servers are done reading the response. This error can
occur when there is a missing or invalid content-Length header on the response, although there may be other causes.

Origin configuration errors

The following describes typical origin configuration errors you may encounter.

Error 503 connection refused

This error occurs when Fastly attempts to make a connection to your origin over a specific port and the server refuses
the connection. It typically appears when the wrong port is specified for the host in the Fastly web interface. To resolve
this error, you may need to adjust your port number to ensure you're using the port needed to connect to your origin. If
adjusting your port number doesn't work, you may also need review your origin configurations to ensure you're allowing
connections from Fastly specific IPs




Error 522: Connection timed out

Error 521: Web server is down

Error 520: Web server is returning an unknown error
Error 523: Origin is unreachable

Error 524: A timeout occurred

Error 525: SSL handshake failed

Error 526: Invalid SSL certificate

Error 1013 HTTP hostname and TLS SNI hostname mismatch
Error 1001: DNS resolution error

Error 1000: DNS points to prohibited IP

Error 1002: DNS points to Prohibited IP

Error 1002: Restricted 4



statusDetail HTTP success messages

Common Accompanying

Response Codes

statusDetails (successful) Meaning

byte_range_caching The HTTP request was served using byte range
caching.

response_from_cache The HTTP request was served from cache.

response_from_cache_validated The return code was set from a cached entry that
was validated by a backend.

response_sent_by_backend The HTTP request was proxied successfully to the
backend.

statusDetail HTTP failure messages

statusDetails (failure)

Any cachable response code is
possible.

Any cachable response code is
possible.

Any cachable response code is
possible.

Returned from VM backend - any
response code is possible.

Common

, Accompanying
Meanin
S Response

Codes

aborted_request_due_to_backend_early_response

A request with 4XX or 5XX



Reverse Proxy Response Propagation to downstream
Author : meshram@google.com
Contributors : piotrsikora@google.com

Objective

At present, many reverse proxies do not provide the ability to propagate a detailed response from
upstream to downstream. This capability can be extremely useful in scenarios where a reverse proxy is
introduced to solve cross cutting concerns and downstream wants to get details about what exactly
happened at upstream. The downstream might also like to take some action based on the response it

received or propagate a detailed response to the downstream for further action. In this design we will
consider the use case of Envoy proxy.

Client — Downstream |—» Reverse Proxy >
R <«—| (Envoy proxy)

Upstream




Network Working Group M. Nottingham

Internet-Draft Fastly
Intended status: Informational P. Sikora
Expires: August 24, 2019 Google

February 20, 2019

The Proxy-Status HTTP Header Field

draft-nottingham-proxy-status-00

Abstract

This document defines the Proxy-Status HT TP header field to convey the details of
errors generated by HTTP intermediaries.

Note to Readers

RFC EDITOR: please remove this section before publication
The issues list for this draft can be found at https://github.com/mnot/I-D/labels/proxy-status.
The most recent (often, unpublished) draft is at https://mnot.github.io/I-D/proxy-status/.

See also the draft’s current status in the IETF datatracker, at https://datatracker.ietf.org/doc/draft-nottingham-proxy-
status/.



HTTP/1.1 504

Proxy-Status:

HTTP/1.1 200

Proxy-Status:

HTTP/1.1 429

Proxy-Status:

Gateway Timeout
connection_timeout; proxy=SomeCDN; origin=abc; tries=3

OK
http_response_status; proxy=SomeCDN; origin=abc

Too Many Requests
http_request_error; proxy=SomeReverseProxy



Interesting?

Adopt?



